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BaSIC /ˈbeɪ·sɪk/  

1) most important or central to something 
2) Bayesian Sensory model Integrated with Characteristics   
 

“The discovery of a new dish does more for the happiness of the human race than the discovery of a star.” – Brillat-Savarin 
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The BaSIC lower model specification 
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𝑑𝑖,𝑗 = Preference rating for product 𝑗 by respondent 𝑖 

𝑡 = 1, … , 𝑇 unknown dimensions 

𝑥𝑗,𝑡 = The location of product 𝑗 on dimension 𝑡 

𝑦𝑖,𝑡 = The location of respondent 𝐼 on dimension 𝑡 

𝛼𝑖,0 = Additive constant for respondent 𝑖  (e.g. scaling effects) 

𝜀𝑖,𝑗 = Error term for product 𝑗 by respondent 𝑖 
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The BaSIC upper model specification 

𝑥𝑗,𝑡 = the location of product 𝑗 on dimension 𝑡 

𝑟𝑗
′ = Vector of predictors, e.g. expert sensory and analytic 

variables 

𝜎𝑥
2 = Standard deviation of 𝑥 
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𝑥𝑗,𝑡 ~𝑁(𝑟𝑗
′𝛾, 𝜎𝑥
2) 

𝑥𝑗,𝑡 
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The BaSIC upper model specification 

𝑦𝑖,𝑡 = the location of respondent 𝑖’s ideal point on dimension 𝑡 

𝜋𝑠 = Probability of being in segment 𝑠 

𝛽0,𝑠,𝑡 = Segment Center 

𝑧𝑖
′ = Vector of subject predictors, e.g. demographics 

𝜎𝑦,𝑡,𝑠
2  = Standard deviation of 𝑦, 𝑡, 𝑠 

𝑦𝑖,𝑡 
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~ 𝜋𝑠

𝑆

𝑠=1

𝑁( 𝛽0,𝑠,𝑡 + 𝑧𝑖
′𝛽𝑡 , 𝜎𝑦,𝑡,𝑠

2 ) 𝑦𝑖,𝑡 
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The BaSIC upper model specification 
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𝑥𝑗,𝑡 ~𝑁(𝑟𝑗
′𝛾, 𝜎𝑥
2) 

~ 𝜋𝑠

𝑆

𝑠=1

𝑁( 𝛽0,𝑠,𝑡 + 𝑧𝑖
′𝛽𝑡 , 𝜎𝑦,𝑡,𝑠

2 ) 𝑦𝑖,𝑡 

Product Predictors 
 
 
People Predictors 
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Bayesian parameter estimation  

Upper & Lower 
Model Parameters 

𝛼𝑖,0 𝑥𝑗,𝑡 𝑦𝑖,𝑡 

𝛼 𝜎𝛼 
2  𝜎𝑦

2 

𝛾 𝜎𝑥
2 𝛽𝑡 

𝜎𝑦,𝑡,𝑠
2  𝛽0,𝑠,𝑡 𝜋𝑠 

These full conditional distributions can be 
obtained by standard prior‐to‐posterior 
computations using Bayes’ theorem. The 
MCMC algorithm cycles through these 
twelve distributions, drawing a sample of the 
parameters from each distribution in turn, 
conditioning each next draw upon the 
realizations of the last draws of all other 
parameters until convergence is obtained. 

Non-informative priors with sensible bounds 
are used to avoid prejudicing the estimation.  
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Why we use a Bayesian model? 
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Prevention of the propagation of 
error 

Greater reliability, even with 
smaller sample sizes 

MCMC Estimation of parameters 
Information borrowing; Natural 
imputation of missing data 

Upper Model link to lower model 

• Easy ID of non-discriminators 
• Dimension reduction 
• Mitigate the influence of 

outliers 
• Prediction for what-if 

scenarios 
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In Summary: HB and BaSIC combine and integrate 
multiple models 
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BaSIC 

Characteristics Model (Upper) 

Demographics Analytics 

Occasions Expert Sensory 

Behaviors Branding 

Consumer Sensory Evaluations Consumer Segments 

Sensory Model (Lower) 
Fits Ideal Points into hedonic scores for products (for each person) 
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Traditional 
Landscape 

BaSIC 

Total products tested 16 14-17 

Number of days 6 4 

Tastings per day 
3 each for 5 days, 

1 for 1 day 
3 

N 1600 ~300 

Number of products 

tasted per person 
16 2/3 – 3/4 

Number of tastings 

per product 
100 Minimum of 75 

Case Study: Beverage Category 

11 
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Consumer Information 

• Overall Liking 

• Sensory Attribute Intensity 

• Demographics 

• Usage Occasions 

Other Data 

• Descriptive Sensory 

• Analytical / Chemistry Measurements 

• City/Location 

Data collected 

12 



© 2012 by in4mation insights, LLC 13 

2008 Landscaping Study 

Upper model reveals 3 
taste segments 

The client wanted to create 
a product similar to P22, 
P21 and P28, but higher 

liked. 



© 2012 by in4mation insights, LLC 14 

2008 Landscaping Study 

Upper model reveals 3 
taste segments 

The client wanted to create 
a product similar to P22, 
P21 and P28, but higher 

liked. 
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2012 Study – Same Market, Same Scope 

This is the actual 
location of the new 

product 

The product is performing better than original projections by the 
brand team! 
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Software Other thoughts 

• HB can be used anywhere as long as you 
can define a model and a prior 
distribution 

 (Choice Based) Conjoint Analysis 

 Just About Right Scales 

 Ideal Profile Method 

 

Tools for Bayesian Analysis 
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OpenBUGS 

SAS 

The R Project 

in4mation insights 
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Thank you!  
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